Podstawy naukowe i międzynarodowa sieć specjalistów
Połączenie monosubstancji o synergicznym działaniu w terapiach przedłużających życie i przeciwstarzeniowych opiera się na wynikach setek badań naukowych dotyczących poszczególnych składników oraz ich działania. Dzięki udziałowi w międzynarodowych sympozjach oraz analizie i ocenie danych z publikacji naukowych gwarantujemy, że protokoły terapii z laboratorium Burg-Apotheke są zawsze aktualne. Twórcy pozostają w stałym kontakcie z uznanymi na płaszczyźnie międzynarodowej badaczami w dziedzinie terapii przeciwstarzeniowych, by nieustannie dokonywać nowych odkryć w tym zakresie i włączać je w aktualne schematy terapii.
Polecane tytuły literatury specjalistycznej na temat modułów terapii to zaledwie skromna część dostępnych publikacji. Z pewnością będą jednak pomocne przy interpretacji medycznego znaczenia programu terapeutycznego przedłużającego życie i przeciwstarzeniowego oraz stosowaniu ich jako uniwersalnego narzędzia terapeutycznego.
Moduł terapeutyczny: EPINATIV
(EPITALON)
117 publikacji w bazie PubMed
Wersja: 01.03.2018
https://www.ncbi.nlm.nih.gov/pubmed/?term=epitalon
Polecana literatura (wybrane pozycje):
1. Harley CB, Liu W, Blasco M, et al. A natural product
telomerase activator as part of a health maintenance
program. Rejuvenation Res 2011;14:45–56 [PMC free
article] [PubMed]
2. Harley CB, Liu W, Flom PL, Raffaele JM. A natural
product telomerase activator as part of a health maintenance
program: Metabolic and cardiovascular
response. Rejuvenation Res 2013;16:386–395[PubMed]
3. Bernardes de Jesus B, Schneeberger K, Vera E, et al.
The telomerase activator TA-65 elongates short telomeres
and increases health span of adult/old mice without
increasing cancer incidence. Aging Cell2011;10:604–621
[PMC free article] [PubMed]
4. Szabo NJ. Dietary safety of cycloastragenol from Astragalus
spp.: Subchronic toxicity and genotoxicity studies.
Food Chem Toxicol 2014;64:322–334 [PubMed]
5. Vaziri H, Dragowska W, Allsopp RC, et al. Evidence for
a mitotic clock in human hematopoietic stem cells: Loss
of telomeric DNA with age. Proc Natl Acad Sci U S A
1994;91:9857–9860 [PMC free
article] [PubMed]
6. Qian Y, Yang L, Cao S. Telomeres and telomerase in
T cells of tumor immunity. Cell Immunol2014;289:63–69
[PubMed]
7. Shawi M, Autexier C. Telomerase, senescence and
ageing. Mech Ageing Dev 2008;129:3–10
[PubMed]
8. Ramunas J, Yakubov E, Brady JJ, et al. Transient delivery
of modified mRNA encoding TERT rapidly extends telomeres
in human cells. FASEB J 2015;29:1930–1939
[PMC free article] [PubMed]
9. Stanley SE, Armanios M. The short and long telomere
syndromes: Paired paradigms for molecular medicine.
Curr Opin Genet Dev 2015;33:1–9
[PMC free article] [PubMed]
10. Bauer ME, Wieck A, Petersen LE, Baptista TS. Neuroendocrine
and viral correlates of premature immunosenescence.
Ann N Y Acad Sci 2015;1351:11–21 [PubMed]
11. Crumpacker CS. Invited commentary: Human cytomegalovirus,
inflammation, cardiovascular disease, and mortality.
Am J Epidemiol 2010; 172:372–374 [PubMed]
12. Savva GM, Pachnio A, Kaul B, et al. Cytomegalo-virus infection
is associated with increased mortality in the older
population. Aging Cell 2013;12:381–387 [PubMed]
13. Canela A, Vera E, Klatt P, Blasco MA. High-throughput
telomere length quantification by FISH and its application
to human population studies. Proc Natl Acad Sci U S
A 2007;104:5300–5305 [PMC free article] [PubMed]
14. Gardner MP, Martin-Ruiz C, Cooper R, et al.
Telomere length and physical performance at older
ages: An individual participant meta-analysis. PLoS One
2013;8:e69526. [PMC free article] [PubMed]
15. Ornish D, Lin J, Daubenmier J, et al. Increased telomerase
activity and comprehensive lifestyle changes: A pilot
study. Lancet Oncol 2008;9: 1048–1057 [PubMed]
16. Aubert G, Hills M, Lansdorp PM. Telomere length
measurement-caveats and a critical assessment of the
available technologies and tools. Mutat Res 2012;
730:59–67 [PMC free article] [PubMed]
17. Frenck RW, Jr, Blackburn EH, Shannon KM. The rate of
telomere sequence loss in human leukocytes varies with
age. Proc Natl Acad Sci U S A 1998;95:5607–5610
[PMC free article] [PubMed]
18. van de Berg PJ, Griffiths SJ, Yong SL, et al. Cytomegalovirus
infection reduces telomere length of the circulating
T cell pool. J Immunol 2010;184:3417–3423 [PubMed]
19. Khan N, Shariff N, Cobbold M, et al. Cytomegalovirus
seropositivity drives the CD8 T cell repertoire toward
greater clonality in healthy elderly individuals.
J Immunol 2002;169:1984–1992 [PubMed]
20. Fauce SR, Jamieson BD, Chin AC, et al. Telomerasebased
pharmacologic enhancement of antiviral
function of human CD8+ T lymphocytes. J Immunol
2008;181:7400–7406 [PMC free article] [PubMed]
21. Le Saux CJ, Davy P, Brampton C, et al. A novel telomerase
activator suppresses lung damage in a murine
model of idiopathic pulmonary fibrosis. PLoS One
2013;8:e58423. [PMC free article] [PubMed]
22. Weischer M, Bojesen SE, Cawthon RM, et al. Short
telomere length, myocardial infarction, ischemic heart
disease, and early death. Arterioscler Thromb Vasc
Biol 2012;32:822–829 [PubMed]
23. Njajou OT, Cawthon RM, Blackburn EH, et al. Shorter
telomeres are associated with obesity and weight gain in
the elderly. Int J Obes (Lond) 2012;36:1176–1179
[PMC free article] [PubMed]
24. Willeit P, Willeit J, Mayr A, et al. Telomere length and
risk of incident cancer and cancer mortality. JAMA
2010;304:69–75 [PubMed]
25. Cohen S, Janicki-Deverts D, Turner RB, et al. Childhood
socioeconomic status, telomere length, and susceptibility
to upper respiratory infection. Brain Behav Immun
2013;34:31–38 [PMC free article] [PubMed]
Moduł terapeutyczny: Q10
6179 publikacji w bazie PubMed
Wersja: 01.03.2018
https://www.ncbi.nlm.nih.gov/pubmed/?term=q10
Polecana literatura (wybrane pozycje):
1. Bhagavan HN, Chopra RK. «Plasma coenzyme Q10
response to oral ingestion of coenzyme Q10 formulations.“
Mitochondrion. 2007 Jun;7 Suppl:S78-88. (Coenzym
Q10 Gehalt im Plasma nach oraler Verabreichung
von Coenzym Q10 Rezepturen) [Quelle als PDF]
2. Shargorodsky M et al., «Effect of long-term treatment
with antioxidants (vitamin C, vitamin E, coenzyme Q10
and selenium) on arterial compliance, humoral factors
and inflammatory markers in patients with multiple cardiovascular
risk factors.“ Nutr Metab (Lond). 2010
Jul 6;7:55. (Langzeiteffekte von Antioxidantien (Vitamin
C, Vitamin E, Coenzym Q10 und Selenium) auf die
Gefässe, humorale Faktoren und Entzündungsmarker bei
Patienten mit kardiovaskulären Risikofaktoren)
[Quelle als PDF]
3. Shults CW et al., «Effects of coenzyme Q10 in early
Parkinson disease: evidence of slowing of the
functional decline.“ Arch Neurol. 2002 Oct;59(10):1541-
50. (Effekte von Coenzym Q10 bei Parkinson-Patienten
im frühen Stadium) [Quelle als PDF]
4. Kooncumchoo P et al., «Coenzyme Q(10) provides
neuroprotection in iron-induced apoptosis in dopaminergic
neurons.“ J Mol Neurosci. 2006;28(2):125-41. (Coenzym
Q10 schützt Nervenzellen) [Quelle als PDF]
5. Schmelzer C et al., «Functions of coenzyme Q10 in
inflammation and gene expression.“ Biofactors. 2008;
32(1-4):179-83. (Funktionen von Coenzym Q10 bei Entzündungen
und der Genexpression) [Quelle als PDF]
6. Ravaglia G et al., «Effect of micronutrient status on natural
killer cell immune function in healthy free-living
subjects aged >/=90 y.“ Am J Clin Nutr. 2000 Feb;71(2):
590-8. (Effekte von Mikronährstoffen auf den Status der
natürlichen Killerzellen in gesunden Individuen über 90
Jahren) [Quelle als PDF]
7. Folkers K et al., «The activities of coenzyme Q10 and
vitamin B6 for immune responses.“ Biochem Biophys
Res Commun. 1993 May 28;193(1):88-92. (Die Aktivität
von Coenzym Q10 und Vitamin B6 bei der Immunantwort)
[Quelle als PDF]
8. Folkers K et al., «Biochemical deficiencies of coenzyme
Q10 in HIV-infection and exploratory treatment.“ Biochem
Biophys Res Commun. 1988 Jun 16;153(2):888-96.
(Biochemischer Mangel an Q10 bei HIV-Infektionen)
[Quelle als PDF]
9. DiMauro S. et al., «Exercise intolerance and the
mitochondrial respiratory chain.“ Ital J Neurol Sci. 1999
Dec;20(6):387-93. (Übungsintoleranz und die mitochondriale
Atmungskette) [Quelle als PDF]
10. Porter DA et al., «The effect of oral coenzyme Q10 on
the exercise tolerance of middle-aged, untrained men.“
Int J Sports Med. 1995 Oct;16(7):421-7. (Die Effekte von
oral eingenommenem Coenzym Q10 auf die Übungstoleranz
von untrainierten Männern mittleren Alters)
[Quelle als PDF]
11. Mizuno K et al., «Antifatigue effects of coenzyme Q10
during physical fatigue.“ Nutrition. 2008 Apr;24(4):293-9.
(Anti-Erschöpfungs-Wirkung von Coenzym Q10 bei
körperlicher Erschöpfung) [Quelle als PDF]
12. Barbiroli B et al., «Improved brain and muscle
mitochondrial respiration with CoQ. An in vivo study
by 31P-MR spectroscopy in patients with mitochondrial
cytopathies.“ Biofactors. 1999;9 (2-4):253-60. (Verbesserte
mitochondriale Hirn und Muskel Leistung mit Coenzym
Q10. Eine in vivo Studie bei Patienten mit mitochondrialer
Zytopathie) [Quelle als PDF]
13. Folkers K, Simonsen R. «Two successful double-blind trials
with coenzyme Q10 (vitamin Q10) on muscular
dystrophies and neurogenic atrophies.“ Biochim Biophys
Acta. 1995 May 24;1271(1):281-6. (Zwei erfolgreiche
doppel-blind Versuche mit Coenzym Q10 bei Muskeldystrophien
und neuronalen Atrophien) [Quelle als PDF]
14. Cordero MD et al., «Coenzyme Q10 distribution in blood
is altered in patients with fibromyalgia.“ Clin Biochem.
2009 May;42(7-8):732-5. (Q10 Verteilung im Blut bei
Patienten mit Fibromyalgie) [Quelle als PDF]
15. Lister RE. «An open, pilot study to evaluate the potential
benefits of coenzyme Q10 combined with Ginkgo biloba
extract in fibromyalgia syndrome.“ J Int Med Res. 2002
Mar-Apr;30(2):195-9. (Eine Pilot-Studie zur Evaluierung
der potentiellen guten Eigenschaften von Coenzym Q10
mit Ginkgo biloba Extrakt bei Fibromyalgie)
[Quelle als PDF]
16. Cooke M et al., «Effects of acute and 14-day coenzyme
Q10 supplementation on exercise performance in both
trained and untrained individuals.“ J Int Soc Sports
Nutr. 2008 Mar 4;5:8. (Effekte von Coenzym Q10 auf die
Übungsperformance von trainierten und untrainierten
Individuen) [Quelle als PDF]
17. Echtay KS et al., «Uncoupling proteins 2 and 3 are highly
active H(+) transporters and highly nucleotide sensitive
when activated by coenzyme Q (ubiquinone).“ Proc Natl
Acad Sci U S A. 2001 Feb 13;98(4):1416-21. (UCP 2 und
UCP 3 sind hochaktive Wasserstoffionen-Transporter und
hoch-Nukleotid-sensitiv, wenn sie von Coenzym Q10
aktiviert werden) [Quelle als PDF]
Moduł terapeutyczny: adaptogeny
Polecana literatura (wybrane pozycje):
1. Evidence-Based Efficacy and Effectiveness of Rhodiola
SHR-E Extract in Treating Stress- and Age-Associated
Disorders (Oxford University Press)
Alexander Pannossian and Georg Wikman
2. Potential use of plant adaptogens in
age-related disorders
Alexander Pannossian and Patricia L. Gerbarg
3. Complementary and integrative therapies
for mental health and aging
Helen Lavretsky, MD, MS
University of California, Los Angeles
Martha Sajatovic, MD
Case western university school of medicine, and
university hospitals of Cleveland
Charles Reynolds III, MD
Western psychiatric institute and clinic, and
university of Pittsburgh school of medicine
Moduł terapeutyczny: RESVERATROL
10.341 publikacji w bazie PubMed
Wersja: 01.03.2018
https://www.ncbi.nlm.nih.gov/pubmed/?term=resveratrol
Polecana literatura (wybrane pozycje):
1. Ahmet, I., et al., Effects of calorie restriction on
cardioprotection and cardiovascular health. J Mol Cell
Cardiol, 2011. 51(2): p. 263-71.
2. Albanes, D., Total calories, body weight, and tumor incidence
in mice.Cancer Res, 1987. 47(8): p. 1987-92.
3. Lane, M.A., D.K. Ingram, and G.S. Roth, Calorie
restriction in nonhuman primates: effects on diabetes
and cardiovascular disease risk.Toxicol Sci, 1999.
52(2 Suppl): p. 41-8.
4. Pearson, K.J., et al., Resveratrol delays age-related
deterioration and mimics transcriptional aspects of dietary
restriction without extending life span. Cell Metab,
2008. 8(2): p. 157-68.
5. Howitz, K.T., et al., Small molecule activators of sirtuins
extend Saccharomyces cerevisiae lifespan. Nature, 2003.
425(6954): p. 191-6.
6. Baur, J.A., et al., Resveratrol improves health and survival
of mice on a high-calorie diet. Nature, 2006. 444(7117):
p. 337-42.
7. Barger, J.L., et al., A low dose of dietary resveratrol
partially mimics caloric restriction and retards aging parameters
in mice. PLoS One, 2008. 3(6): p. e2264.
8. Timmers, S., et al., Calorie restriction-like effects of
30 days of resveratrol supplementation on energy metabolism
and metabolic profile in obese humans. Cell
Metab, 2011. 14(5): p. 612-22.
9. Palsamy, P. and S. Subramanian, Ameliorative potential
of resveratrol on proinflammatory cytokines, hyperglycemia
mediated oxidative stress, and pancreatic beta-cell
dysfunction in streptozotocin-nicotinamide-induced
diabetic rats. J Cell Physiol, 2010. 224(2): p. 423-32.
10. Ramadori, G., et al., Central administration of resveratrol
improves diet-induced diabetes. Endocrinology, 2009.
150(12): p. 5326-33.
11. Penumathsa, S.V., et al., Resveratrol enhances GLUT-4
translocation to the caveolar lipid raft fractions through
AMPK/Akt/eNOS signalling pathway in diabetic myocardium.
J Cell Mol Med, 2008. 12(6A): p. 2350-61.
12. Shang, J., et al., Resveratrol improves non-alcoholic fatty
liver disease by activating AMP-activated protein kinase.
Acta Pharmacol Sin, 2008. 29(6): p. 698-706.
13. Sun, C., et al., SIRT1 improves insulin sensitivity under
insulin-resistant conditions by repressing PTP1B. Cell
Metab, 2007. 6(4): p. 307-19.
14. Um, J.H., et al., AMP-activated protein kinasedeficient
mice are resistant to the metabolic effects of resveratrol.
Diabetes, 2010. 59(3): p. 554-63.
15. Howells, L.M., et al., Phase I randomised doubleblind
pilot study of micronized resveratrol(SRT501) in
patients with hepatic metastases – safety, pharmacokinetics
andpharmacodynamics. Cancer Prev
Res (Phila), 2011.
16. Kubota, T., et al., Combined effects of resveratrol and
paclitaxel on lung cancer cells. Anticancer
Res, 2003. 23(5A): p. 4039-46.
17. Jazirehi, A.R. and B. Bonavida, Resveratrol modifies the
expression of apoptotic regulatory proteins and sensitizes
non-Hodgkin’s lymphoma and multiple myeloma cell
lines to paclitaxel-induced apoptosis. Mol Cancer Ther,
2004. 3(1): p. 71-84.
18. Mao, Q.Q., et al., Resveratrol confers resistance against
taxol via induction of cell cycle arrest in human cancer
cell lines. Mol Nutr Food Res, 2010. 54(11): p. 1574-84.
19. Sengottuvelan, M., R. Senthilkumar, and N. Nalini,
Modulatory influence of dietary resveratrol during different
phases of 1,2-dimethylhydrazine induced mucosal
lipid-peroxidation, antioxidant status and aberrant crypt
foci development in rat colon carcinogenesis.Biochim
Biophys Acta, 2006. 1760(8): p. 1175-83.
20. Potter, G.A., et al., The cancer preventative agent
resveratrol is converted to the anticancer agent piceatannol
by the cytochrome P450 enzyme CYP1B1.
Br J Cancer, 2002. 86(5): p. 774-8.
21. Provinciali, M., et al., Effect of resveratrol on the development
of spontaneous mammary tumors in HER-2/neu
transgenic mice. Int J Cancer, 2005. 115(1): p. 36-45.
22. Zhou, H.B., et al., Anticancer activity of resveratrol on
implanted human primary gastric carcinoma cells in nude
mice. World J Gastroenterol, 2005. 11(2): p. 280-4.
23. Afaq, F., V.M. Adhami, and N. Ahmad, Prevention of
short-term ultraviolet B radiation-mediated damages by
resveratrol in SKH-1 hairless mice. Toxicol Appl
Pharmacol, 2003. 186(1): p. 28-37.
24. Kalra, N., et al., Resveratrol induces apoptosis involving
mitochondrial pathways in mouse sk /ain ptumorigenesis.
Life Sci, 2008. 82(7-8): p. 348-58.
25. Jang, M. and J.M. Pezzuto, Effects of resveratrol on
12-O-tetradecanoylphorbol-13-acetate-induced
oxidative events and gene expression in mouse skin.
Cancer Lett, 1998. 134(1): p. 81-9.
26. Lagouge, M., et al., Resveratrol improves mitochondrial
function and protects against metabolic disease by
activating SIRT1 and PGC-1alpha.Cell, 2006. 127(6):
p. 1109-22.
27. Yang, J.Y., et al., Enhanced inhibition of adipogenesis
and induction of apoptosis in 3T3-L1 adipocytes with
combinations of resveratrol and quercetin. Life Sci,
2008. 82(19-20): p. 1032-9.
28. Gnoni, G.V. and G. Paglialonga, Resveratrol inhibits fatty
acid and triacylglycerol synthesis in rat hepatocytes.
Eur J Clin Invest, 2009. 39(3): p. 211-8.
29. Szkudelska, K., L. Nogowski, and T. Szkudelski, Resveratrol,
a naturally occurring diphenolic compound, affects
lipogenesis, lipolysis and the antilipolytic action of insulin
in isolated rat adipocytes. J Steroid Biochem Mol Biol,
2009. 113(1-2): p. 17-24.
Moduł terapeutyczny: OLIPHENOLIA
(Hydroxytyrosol)
982 publikacji w bazie PubMed
Wersja: 01.03.2018
https://www.ncbi.nlm.nih.gov/pubmed/?term=resveratrol
Polecana literatura (wybrane pozycje):
1. Bravo, L., Polyphenols: Chemistry, dietary sources,
metabolism, and nutritional significance. Nutr.
Rev. 56 (1998) 317 - 333.
2. Stich, H.F., Rosin, M.P., Naturally occurring
phenolics as antimutagenic and anticarcinogenic
agents. Adv. Exp. Med. Biol. 177 (1984) 1 - 29.
3. Tinel, M., et al., Inactivation of human liver
cytochrome P-450 by the drug methoxsalen and
other psoralen derivatives. Biochem. Pharmacol.
36 (1987) 951 - 955.
4. Natarajan, K., et al., Caffeic acid phenethylester
is a potent and specific inhibitor of activation of
nuclear transcription factor NFkb Proc. Natl. Acad.
Sci. 93 (1996) 9090 - 9095.
5. Visioli, F., Galli, C., The effect of minor constituents
of olive oil on cardiovascular disease: New
findings. Nutr. Rev. 56 (1998) 142 - 147.
6. Manna, C., et al., The protective effect of olive
oil polyphenol (3,4-Dihydroxyphenyl)-ethanol
counteracts reactive oxygen metabolite-induced
cytotoxicity in Caco-2 cells. J. Nutr. 127 (1997)
286 - 292.