Podstawy naukowe
Podstawy naukowe i międzynarodowa sieć specjalistów
Połączenie monosubstancji o synergicznym działaniu w terapiach przedłużających życie i przeciwstarzeniowych opiera się na wynikach setek badań naukowych dotyczących poszczególnych składników oraz ich działania. Dzięki udziałowi w międzynarodowych sympozjach oraz analizie i ocenie danych z publikacji naukowych gwarantujemy, że protokoły terapii z laboratorium Burg-Apotheke są zawsze aktualne. Twórcy pozostają w stałym kontakcie z uznanymi na płaszczyźnie międzynarodowej badaczami w dziedzinie terapii przeciwstarzeniowych, by nieustannie dokonywać nowych odkryć w tym zakresie i włączać je w aktualne schematy terapii. Polecane tytuły literatury specjalistycznej na temat modułów terapii to zaledwie skromna część dostępnych publikacji. Z pewnością będą jednak pomocne przy interpretacji medycznego znaczenia programu terapeutycznego przedłużającego życie i przeciwstarzeniowego oraz stosowaniu ich jako uniwersalnego narzędzia terapeutycznego.
Moduł terapeutyczny: EPINATIV (EPITALON)
117 publikacji w bazie PubMed
Wersja: 01.03.2018
https://www.ncbi.nlm.nih.gov/pubmed/?term=epitalon
Polecana literatura (wybrane pozycje):
1. Harley CB, Liu W, Blasco M, et al. A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res 2011;14:45–56 [PMC free article] [PubMed]
2. Harley CB, Liu W, Flom PL, Raffaele JM. A natural product telomerase activator as part of a health maintenance program: Metabolic and cardiovascular response. Rejuvenation Res 2013;16:386–395[PubMed]
3. Bernardes de Jesus B, Schneeberger K, Vera E, et al. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell2011;10:604–621 [PMC free article] [PubMed]
4. Szabo NJ. Dietary safety of cycloastragenol from Astragalus spp.: Subchronic toxicity and genotoxicity studies. Food Chem Toxicol 2014;64:322–334 [PubMed]
5. Vaziri H, Dragowska W, Allsopp RC, et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc Natl Acad Sci U S A 1994;91:9857–9860 [PMC free article] [PubMed]
6. Qian Y, Yang L, Cao S. Telomeres and telomerase in T cells of tumor immunity. Cell Immunol2014;289:63–69 [PubMed]
7. Shawi M, Autexier C. Telomerase, senescence and ageing. Mech Ageing Dev 2008;129:3–10 [PubMed]
8. Ramunas J, Yakubov E, Brady JJ, et al. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. FASEB J 2015;29:1930–1939 [PMC free article] [PubMed]
9. Stanley SE, Armanios M. The short and long telomere syndromes: Paired paradigms for molecular medicine. Curr Opin Genet Dev 2015;33:1–9 [PMC free article] [PubMed]
10. Bauer ME, Wieck A, Petersen LE, Baptista TS. Neuroendocrine and viral correlates of premature immunosenescence. Ann N Y Acad Sci 2015;1351:11–21 [PubMed]
11. Crumpacker CS. Invited commentary: Human cytomegalovirus, inflammation, cardiovascular disease, and mortality. Am J Epidemiol 2010; 172:372–374 [PubMed]
12. Savva GM, Pachnio A, Kaul B, et al. Cytomegalo-virus infection is associated with increased mortality in the older population. Aging Cell 2013;12:381–387 [PubMed]
13. Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A 2007;104:5300–5305 [PMC free article] [PubMed]
14. Gardner MP, Martin-Ruiz C, Cooper R, et al. Telomere length and physical performance at older ages: An individual participant meta-analysis. PLoS One 2013;8:e69526. [PMC free article] [PubMed]
15. Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: A pilot study. Lancet Oncol 2008;9: 1048–1057 [PubMed]
16. Aubert G, Hills M, Lansdorp PM. Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat Res 2012; 730:59–67 [PMC free article] [PubMed]
17. Frenck RW, Jr, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci U S A 1998;95:5607–5610 [PMC free article] [PubMed]
18. van de Berg PJ, Griffiths SJ, Yong SL, et al. Cytomegalovirus infection reduces telomere length of the circulating T cell pool. J Immunol 2010;184:3417–3423 [PubMed]
19. Khan N, Shariff N, Cobbold M, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 2002;169:1984–1992 [PubMed]
20. Fauce SR, Jamieson BD, Chin AC, et al. Telomerasebased pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes. J Immunol 2008;181:7400–7406 [PMC free article] [PubMed]
21. Le Saux CJ, Davy P, Brampton C, et al. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS One 2013;8:e58423. [PMC free article] [PubMed]
22. Weischer M, Bojesen SE, Cawthon RM, et al. Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arterioscler Thromb Vasc Biol 2012;32:822–829 [PubMed]
23. Njajou OT, Cawthon RM, Blackburn EH, et al. Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes (Lond) 2012;36:1176–1179 [PMC free article] [PubMed]
24. Willeit P, Willeit J, Mayr A, et al. Telomere length and risk of incident cancer and cancer mortality. JAMA 2010;304:69–75 [PubMed]
25. Cohen S, Janicki-Deverts D, Turner RB, et al. Childhood socioeconomic status, telomere length, and susceptibility to upper respiratory infection. Brain Behav Immun 2013;34:31–38 [PMC free article] [PubMed]
Moduł terapeutyczny: Q10
6179 publikacji w bazie PubMed
Wersja: 01.03.2018
https://www.ncbi.nlm.nih.gov/pubmed/?term=q10
Polecana literatura (wybrane pozycje):
1. Bhagavan HN, Chopra RK. «Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations.“ Mitochondrion. 2007 Jun;7 Suppl:S78-88. (Coenzym Q10 Gehalt im Plasma nach oraler Verabreichung von Coenzym Q10 Rezepturen) [Quelle als PDF]
2. Shargorodsky M et al., «Effect of long-term treatment with antioxidants (vitamin C, vitamin E, coenzyme Q10 and selenium) on arterial compliance, humoral factors and inflammatory markers in patients with multiple cardiovascular risk factors.“ Nutr Metab (Lond). 2010 Jul 6;7:55. (Langzeiteffekte von Antioxidantien (Vitamin C, Vitamin E, Coenzym Q10 und Selenium) auf die Gefässe, humorale Faktoren und Entzündungsmarker bei Patienten mit kardiovaskulären Risikofaktoren) [Quelle als PDF]
3. Shults CW et al., «Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline.“ Arch Neurol. 2002 Oct;59(10):1541- 50. (Effekte von Coenzym Q10 bei Parkinson-Patienten im frühen Stadium) [Quelle als PDF]
4. Kooncumchoo P et al., «Coenzyme Q(10) provides neuroprotection in iron-induced apoptosis in dopaminergic neurons.“ J Mol Neurosci. 2006;28(2):125-41. (Coenzym Q10 schützt Nervenzellen) [Quelle als PDF]
5. Schmelzer C et al., «Functions of coenzyme Q10 in inflammation and gene expression.“ Biofactors. 2008; 32(1-4):179-83. (Funktionen von Coenzym Q10 bei Entzündungen und der Genexpression) [Quelle als PDF]
6. Ravaglia G et al., «Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged >/=90 y.“ Am J Clin Nutr. 2000 Feb;71(2): 590-8. (Effekte von Mikronährstoffen auf den Status der natürlichen Killerzellen in gesunden Individuen über 90 Jahren) [Quelle als PDF]
7. Folkers K et al., «The activities of coenzyme Q10 and vitamin B6 for immune responses.“ Biochem Biophys Res Commun. 1993 May 28;193(1):88-92. (Die Aktivität von Coenzym Q10 und Vitamin B6 bei der Immunantwort) [Quelle als PDF]
8. Folkers K et al., «Biochemical deficiencies of coenzyme Q10 in HIV-infection and exploratory treatment.“ Biochem Biophys Res Commun. 1988 Jun 16;153(2):888-96. (Biochemischer Mangel an Q10 bei HIV-Infektionen) [Quelle als PDF]
9. DiMauro S. et al., «Exercise intolerance and the mitochondrial respiratory chain.“ Ital J Neurol Sci. 1999 Dec;20(6):387-93. (Übungsintoleranz und die mitochondriale Atmungskette) [Quelle als PDF]
10. Porter DA et al., «The effect of oral coenzyme Q10 on the exercise tolerance of middle-aged, untrained men.“ Int J Sports Med. 1995 Oct;16(7):421-7. (Die Effekte von oral eingenommenem Coenzym Q10 auf die Übungstoleranz von untrainierten Männern mittleren Alters) [Quelle als PDF]
11. Mizuno K et al., «Antifatigue effects of coenzyme Q10 during physical fatigue.“ Nutrition. 2008 Apr;24(4):293-9. (Anti-Erschöpfungs-Wirkung von Coenzym Q10 bei körperlicher Erschöpfung) [Quelle als PDF]
12. Barbiroli B et al., «Improved brain and muscle mitochondrial respiration with CoQ. An in vivo study by 31P-MR spectroscopy in patients with mitochondrial cytopathies.“ Biofactors. 1999;9 (2-4):253-60. (Verbesserte mitochondriale Hirn und Muskel Leistung mit Coenzym Q10. Eine in vivo Studie bei Patienten mit mitochondrialer Zytopathie) [Quelle als PDF]
13. Folkers K, Simonsen R. «Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies.“ Biochim Biophys Acta. 1995 May 24;1271(1):281-6. (Zwei erfolgreiche doppel-blind Versuche mit Coenzym Q10 bei Muskeldystrophien und neuronalen Atrophien) [Quelle als PDF]
14. Cordero MD et al., «Coenzyme Q10 distribution in blood is altered in patients with fibromyalgia.“ Clin Biochem. 2009 May;42(7-8):732-5. (Q10 Verteilung im Blut bei Patienten mit Fibromyalgie) [Quelle als PDF]
15. Lister RE. «An open, pilot study to evaluate the potential benefits of coenzyme Q10 combined with Ginkgo biloba extract in fibromyalgia syndrome.“ J Int Med Res. 2002 Mar-Apr;30(2):195-9. (Eine Pilot-Studie zur Evaluierung der potentiellen guten Eigenschaften von Coenzym Q10 mit Ginkgo biloba Extrakt bei Fibromyalgie) [Quelle als PDF]
16. Cooke M et al., «Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals.“ J Int Soc Sports Nutr. 2008 Mar 4;5:8. (Effekte von Coenzym Q10 auf die Übungsperformance von trainierten und untrainierten Individuen) [Quelle als PDF]
17. Echtay KS et al., «Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone).“ Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1416-21. (UCP 2 und UCP 3 sind hochaktive Wasserstoffionen-Transporter und hoch-Nukleotid-sensitiv, wenn sie von Coenzym Q10 aktiviert werden) [Quelle als PDF]
Moduł terapeutyczny: adaptogeny
Polecana literatura (wybrane pozycje):
1. Evidence-Based Efficacy and Effectiveness of Rhodiola SHR-E Extract in Treating Stress- and Age-Associated Disorders (Oxford University Press) Alexander Pannossian and Georg Wikman
2. Potential use of plant adaptogens in age-related disorders Alexander Pannossian and Patricia L. Gerbarg
3. Complementary and integrative therapies for mental health and aging Helen Lavretsky, MD, MS University of California, Los Angeles Martha Sajatovic, MD Case western university school of medicine, and university hospitals of Cleveland Charles Reynolds III, MD Western psychiatric institute and clinic, and university of Pittsburgh school of medicine
Moduł terapeutyczny: RESVERATROL
10.341 publikacji w bazie PubMed
Wersja: 01.03.2018
https://www.ncbi.nlm.nih.gov/pubmed/?term=resveratrol
Polecana literatura (wybrane pozycje):
1. Ahmet, I., et al., Effects of calorie restriction on cardioprotection and cardiovascular health. J Mol Cell Cardiol, 2011. 51(2): p. 263-71.
2. Albanes, D., Total calories, body weight, and tumor incidence in mice.Cancer Res, 1987. 47(8): p. 1987-92.
3. Lane, M.A., D.K. Ingram, and G.S. Roth, Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular disease risk.Toxicol Sci, 1999. 52(2 Suppl): p. 41-8.
4. Pearson, K.J., et al., Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab, 2008. 8(2): p. 157-68.
5. Howitz, K.T., et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003. 425(6954): p. 191-6.
6. Baur, J.A., et al., Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006. 444(7117): p. 337-42.
7. Barger, J.L., et al., A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One, 2008. 3(6): p. e2264.
8. Timmers, S., et al., Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab, 2011. 14(5): p. 612-22.
9. Palsamy, P. and S. Subramanian, Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic beta-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol, 2010. 224(2): p. 423-32.
10. Ramadori, G., et al., Central administration of resveratrol improves diet-induced diabetes. Endocrinology, 2009. 150(12): p. 5326-33.
11. Penumathsa, S.V., et al., Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/Akt/eNOS signalling pathway in diabetic myocardium. J Cell Mol Med, 2008. 12(6A): p. 2350-61.
12. Shang, J., et al., Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin, 2008. 29(6): p. 698-706.
13. Sun, C., et al., SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab, 2007. 6(4): p. 307-19.
14. Um, J.H., et al., AMP-activated protein kinasedeficient mice are resistant to the metabolic effects of resveratrol. Diabetes, 2010. 59(3): p. 554-63.
15. Howells, L.M., et al., Phase I randomised doubleblind pilot study of micronized resveratrol(SRT501) in patients with hepatic metastases – safety, pharmacokinetics andpharmacodynamics. Cancer Prev Res (Phila), 2011.
16. Kubota, T., et al., Combined effects of resveratrol and paclitaxel on lung cancer cells. Anticancer Res, 2003. 23(5A): p. 4039-46.
17. Jazirehi, A.R. and B. Bonavida, Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin’s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther, 2004. 3(1): p. 71-84.
18. Mao, Q.Q., et al., Resveratrol confers resistance against taxol via induction of cell cycle arrest in human cancer cell lines. Mol Nutr Food Res, 2010. 54(11): p. 1574-84.
19. Sengottuvelan, M., R. Senthilkumar, and N. Nalini, Modulatory influence of dietary resveratrol during different phases of 1,2-dimethylhydrazine induced mucosal lipid-peroxidation, antioxidant status and aberrant crypt foci development in rat colon carcinogenesis.Biochim Biophys Acta, 2006. 1760(8): p. 1175-83.
20. Potter, G.A., et al., The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer, 2002. 86(5): p. 774-8.
21. Provinciali, M., et al., Effect of resveratrol on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Int J Cancer, 2005. 115(1): p. 36-45.
22. Zhou, H.B., et al., Anticancer activity of resveratrol on implanted human primary gastric carcinoma cells in nude mice. World J Gastroenterol, 2005. 11(2): p. 280-4.
23. Afaq, F., V.M. Adhami, and N. Ahmad, Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol Appl Pharmacol, 2003. 186(1): p. 28-37.
24. Kalra, N., et al., Resveratrol induces apoptosis involving mitochondrial pathways in mouse sk /ain ptumorigenesis. Life Sci, 2008. 82(7-8): p. 348-58.
25. Jang, M. and J.M. Pezzuto, Effects of resveratrol on 12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in mouse skin. Cancer Lett, 1998. 134(1): p. 81-9.
26. Lagouge, M., et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.Cell, 2006. 127(6): p. 1109-22.
27. Yang, J.Y., et al., Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci, 2008. 82(19-20): p. 1032-9.
28. Gnoni, G.V. and G. Paglialonga, Resveratrol inhibits fatty acid and triacylglycerol synthesis in rat hepatocytes. Eur J Clin Invest, 2009. 39(3): p. 211-8.
29. Szkudelska, K., L. Nogowski, and T. Szkudelski, Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol, 2009. 113(1-2): p. 17-24.
Moduł terapeutyczny: OLIPHENOLIA (Hydroxytyrosol)
982 publikacji w bazie PubMed
Wersja: 01.03.2018
https://www.ncbi.nlm.nih.gov/pubmed/?term=resveratrol
Polecana literatura (wybrane pozycje):
1. Bravo, L., Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56 (1998) 317 - 333.
2. Stich, H.F., Rosin, M.P., Naturally occurring phenolics as antimutagenic and anticarcinogenic agents. Adv. Exp. Med. Biol. 177 (1984) 1 - 29.
3. Tinel, M., et al., Inactivation of human liver cytochrome P-450 by the drug methoxsalen and other psoralen derivatives. Biochem. Pharmacol. 36 (1987) 951 - 955.
4. Natarajan, K., et al., Caffeic acid phenethylester is a potent and specific inhibitor of activation of nuclear transcription factor NFkb Proc. Natl. Acad. Sci. 93 (1996) 9090 - 9095.
5. Visioli, F., Galli, C., The effect of minor constituents of olive oil on cardiovascular disease: New findings. Nutr. Rev. 56 (1998) 142 - 147.
6. Manna, C., et al., The protective effect of olive oil polyphenol (3,4-Dihydroxyphenyl)-ethanol counteracts reactive oxygen metabolite-induced cytotoxicity in Caco-2 cells. J. Nutr. 127 (1997) 286 - 292.

Klinika kroplówek Lublin

Oferujemy profilaktykę zdrowia oraz wspomaganie leczenia w wielu schorzeniach poprzez odpowiednio dobrane kroplówki witaminowe. Odwiedź nas w Lublinie.


Anika Maziarz - ZnanyLekarz.pl
Cookies

Korzystając z tej witryny, automatycznie akceptujesz używanie przez nas plików cookie. Czytaj więcej.

AKCEPTUJĘ